
PhD Mathcamp Final Name:
Summer 2019
Time Limit: 120 Minutes

Instructions: Some questions on this test may be a bit difficult. Relax, and answer all questions to the
best of your ability (check every page to make sure you have answered everything). Note that partial
solutions will receive partial credit, so putting something for a question will be better than leaving that
question blank.

1. (5 points) Sets

(a) Express the following set using set-builder notation {f(x) ∈ Z : p(x)}, where f(x) is a function
of x, and p(x) is a statement or condition of x.

{1, 1

4
,

1

9
,

1

16
, ...}

{
1

n2
: n ∈ N

}

(b) Consider the metric space: (R, |·|). is ( 1
2 , 1] open, closed, or neither? Justify your answer.

The interval ( 1
2 , 1] is not open since if you put an open ball around 1, that ball contains

elements not in ( 1
2 , 1]. The interval ( 1

2 , 1] is not closed as it does not contain 0, which is a
limit point of the interval.

Consider the metric space: ([0, 1], |·|). is ( 1
2 , 1] open, closed, or neither? Justify your answer.

The interval ( 1
2 , 1] is open as there exists an ε > 0 such that if you put an open ball around

any point, that open ball will be contained in (1
2 , 1]
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2. (15 points) Consider the following consumer utility max problem (and assume m ≥ p ≥ 1):

max
(x1,x2)∈R2

+

lnx1 + x2

such that

x1 + px2 ≤ m
x1 ≥ 1

1

(a) Using the definition of strictly increasing function (without using derivatives), show that
f(x) = lnx and g(x) = x are strictly increasing functions.
Let x2 > x1. Notice:

f(x2)− f(x1) = ln(x2)− ln(x1) = ln

(
x2
x1

)
> 0

g(x2)− g(x1) = x2 − x1 > 0

Therefore f and g are strictly increasing functions.

(b) Calculate the Hessian, D2f(x1,x2), of the objective function, f(x1, x2) = lnx1 + x2, and show
that it is negative semi-definite over the domain x1 ≥ 1, x2 ≥ 0.

Df(x1,x2) =
[

1
x1

1
]

D2f(x1,x2) =

[
− 1
x2
1

0

0 0

]
Notice that for x1 ≥ 1, it follows that − 1

x2
1
< 0. The first order principal minors (− 1

x2
1

and 0)

are nonpositive, and the second order principal minor (0) is nonnegative. Thus the Hessian
is negative semi-definite. This tells us that the objective function is concave.

1Recall that R2
+ = {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0}
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(c) Define the Lagrangian and find the Karush-Kuhn-Tucker conditions (you don’t have to include
the nonnegativity constraint of x2 ≥ 0).

L = lnx1 + x2 − λ(x1 + px2 −m)− µ(1− x1)

KKT conditions

∂L

∂x1
:

1

x∗1
− λ∗ + µ∗ = 0 (1)

∂L

∂x2
:1− λ∗p = 0 (2)

λ∗(x∗1 + px∗2 −m) = 0 (3)

µ∗x∗1 = 0 (4)

λ∗, µ∗ ≥ 0 (5)

x∗1 + px∗2 ≤ m (6)

x∗1 ≥ 1 (7)

(d) In part (a) we showed that the objective function is strictly increasing in both inputs (x1 and
x2). That means that the budget constraint (x1 + px2 ≤ m) is binding, or in other words
holds with equality (x1 + px2 = m). Give some intuition why this is the case.

The objective function (utility function) is strictly increasing in both inputs, meaning that
the consumer will gain more utility by having more of either good. Thus, the consumer will
spend all of his income (as he is better off buying x1 and x2).



PhD Mathcamp Final Page 4 of 9

(e) Assume that the constraints x1 ≥ 1 and x2 ≥ 0 are not binding. Using the conditions in (c)
and (d), find the maximizers, x∗1 and x∗2.

From equation (2), we find that λ∗ = 1
p , and from equation (1), we find that x∗1 = 1

λ , thus
x∗1 = p. Plugging this into the budget constraint, we find that x∗2 = m

p − 1.

I forgot to include the part ”Assume that the constraints x1 ≥ 1 and x2 ≥ 0 are not binding”
on the test. If however, we don’t know that x1 ≥ 1 and x2 ≥ 0 are not binding, and the
Lagrangian is:

L = lnx1 + x2 − λ(x1 + px2 −m)− µ1(1− x1) + µ2x2

The FOCs then become:

∂f

∂x1
:

1

x1
− λ+ µ1 = 0

∂f

∂x2
:1− pλ+ µ2 = 0

Notice that since the objective function is strictly increasing in its inputs, then at least one
of µ1 and µ2 is positive. Then we have 1 of three cases:

Case 1: µ1 = 0 and µ2 > 0

⇒ x∗1 =
1

λ∗

⇒ λ∗ =
1 + µ∗2
p

⇒ x∗1 =
p

1 + µ∗2

From Budget Constraint:

⇒ x∗2 =
m

p
− 1

1 + µ∗2

Since we know that x∗2 = 0:

m

p
=

1

1 + µ∗2

m =
p

1 + µ∗2

Thus x1 = m and x2 = 0.

Case 2: µ1 > 0 and µ2 = 0

λ∗ =
1

p

⇒ x∗1 =
1

1
p − µ

∗
1

⇒ 1 =
1

1
p − µ

∗
1

⇒ x∗2 =
m− 1

p

Thus, x1 = 0, and x∗2 = m−1
p
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Case 3: µ1 = 0 and µ2 = 0 Then we get the following from the FOCs and the budget constraint:

x∗1 = p

⇒ x∗2 =
m

p
− 1

Notice that since m ≥ p ≥ 1, x∗1 = p and x∗2 = m
p − 1 gives the maximum amount of utility.
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3. (10 points) Prove the following:

(a) Recall that the epigraph of a function from R→ R is the set of points lying on or above the
graph: epi f = {(x, y) : x ∈ R, y ∈ R, y ≥ f(x)}. Show that if the epigraph of a function is
convex, then the function is convex.

Proof: We need to show that f is convex. In other words, for for x1, x2 ∈ R, it follows that:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

where λ ∈ [0, 1]

Assume that epif is convex. We will consider two elements that are in the graph of f , and are
thus in the epigraph of f . Thus for z1, z2 ∈ epi f where z1 = (x1, f(x1)) and z2 = (x2, f(x2)),
it follows that λz1 + (1− λ)z2 ∈ epi f . Let (xλ, yλ) = zλ = λz1 + (1− λ)z2. Since zλ is in the
epigraph, by definition yλ ≥ f(xλ). This leads us to f(λx1+(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2),
which is the definition of f being convex.
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(b) Let f : R→ R be a concave function. Using the definition of concave function, show that

f(y)− f(x)

y − x
≤ f ′(x)

Hint: You might find the definition of derivative helpful: f ′(x) = f(x+h)−f(x)
h where h is some

small value (we take h→ 0 to find the derivative)

We need the condition y > x to hold in order for the inequality f(λx1 + (1 − λ)x2) ≤
λf(x1) + (1− λ)f(x2) to hold.

From the definition of concavity, we see that for x, y ∈ f , and λ ∈ [0, 1], then:

f(λy + (1− λx)) ≥ λf(y) + (1− λ)f(x)

⇒ f(λy + (1− λ)x)− f(x) ≥ λ(f(y)− f(x)) (8)

⇒ f(λy + (1− λ)x)− f(x)

λ
≥ (f(y)− f(x)) (9)

Notice that we need to introduce h into our equation. We need the following equation to hold:

x+ h = λy + (1− λx)

h = λ(y − x) (10)

Using 10 and 9, we get:

f(x+ h)− f(x)

h
(y − x) ≥ f(y)− f(x)

⇒ f(x+ h)− f(x)

h
≥ f(y)− f(x)

y − x

⇒ f ′(x) ≥ f(y)− f(x)

y − x
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4. (5 points) Show that a convergent sequence in the metric space (R, |·|) where |·| is the absolute
value metric is a Cauchy sequence.

Let {xn} be a convergent sequence. Thus, for εc > 0 there exists an N such that N ∈ N. Thus for
m,n ≥ N , it follows that:

|xn − x|< εc and |xm − x|< εc

Notice:

|xn − x|+|xm − x| < 2εc

and

|xn − x|+|xm − x| ≥ |(xn − x)− (xm − x)|
= |xn − xm|

Let 2εc = ε, then:

|xn − xm|< ε

Thus {xn} is Cauchy.
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5. (5 points) Consider the metric space (R, |·|) where |·| is the absolute value metric. The Brouwer’s
Fixed Point Theorem is as follows:

Suppose that X ⊂ R is a nonempty, compact, convex set, and that f : X → X is a continuous
function from X into itself. Then f has a fixed point; that is an x∗ ∈ X such that x∗ = f(x).

Use the intermediate value theorem to prove Brouwer’s Fixed Point Theorem in this metric space
(hint: A set that is convex and compact in R will be a interval set of the form [a, b] where a, b ∈ R).

Let X = [a, b] where a, b ∈ R. Since : f [a, b]→ [a, b], then for x ∈ [a, b], it follows that f(x) ∈ [a, b].
For x∗ to be a fixed point, it follows that x∗ = f(x∗), or f(x∗)− x∗ = 0. Consider a and b. Notice
that f(a) ≥ a and f(b) ≤ b, or f(a)− a ≥ 0 and f(b)− b ≤ 0. Since f is continuous, then we can
apply the intermediate value theorem.

First define a new function, g(x) = f(x)− x. Thus g(a) = f(a)− a ≥ 0, and g(b) = f(b)− b ≤ 0.
By the intermediate value theorem, it follows that g(b) ≤ 0 ≤ g(a). This leads to f(x)− x = 0, or
f(x) = x. This is a fixed point.


