PhD Mathcamp Final

Summer 2018

Time Limit: 120 Minutes

Name: _____

Instructions: Some questions on this test may be a bit difficult. Relax, and answer all 5 questions to the best of your ability (check every page to make sure you have answered everything). Note that partial solutions will receive partial credit, so putting something for a question will be better than leaving that question blank.

- 1. (10 points) Let $U = x^{\alpha}y^{\beta}$ where $(x,y) \in \mathbb{R}^2_+$, $\alpha + \beta = 1$, and $\alpha, \beta > 0$.
 - (a) Is U homogeneous? If so, of what degree?

(b) Show that U is concave.

¹Recall that $\mathbb{R}^2_+ = \{(x,y) \in \mathbb{R}^2 : x \ge 0 \text{ and } y \ge 0\}$

- 2. (5 points) Express the following sets using set-builder notation $\{f(x) \in \mathbb{Z} : p(x)\}$, where f(x) is a function of x, and p(x) is a statement or condition of x.
 - (a) $\{2,4,6,8,...\}$

(b) $\{-27,-8,-1,0\}$

- 3. (5 points) Consider the metric space: $(\mathbb{R}, |\cdot|)$.
 - (a) Show that the interval (0,1) is open.

(b) Show that the set $\{1, 2, 3\}$ is closed.

- 4. (10 points) Prove the following:
 - (a) The intersection of two convex sets is convex.

(b) The maximum of two convex functions is convex. In other words, if the functions f_1 and f_2 are convex, then $\max\{f_1,f_2\}$ is convex.

5. (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} . Now assume that there is a $\lambda \in (0,1)$ such that:

$$|f(x) - f(x')| \le \lambda |x - x'|$$

for all $x, x' \in \mathbb{R}$

Suppose we start with $y_1 \in \mathbb{R}$ and construct a sequence (y_n) by a applying the function f at each index to the previous element of the sequence. Thus our sequence would look like the following:

$$(y_n) = (y_1, y_2, y_3, y_4, ...)$$

= $(y_1, f(y_1), f(f(y_1)), f(f(f(y_1))), ...)$

Or in other words, $y_{n+1} = f(y_n)$.

You may find the following property of infinite series useful:

$$\sum_{i=1}^{\infty} ar^{i} = a \sum_{i=1}^{\infty} r^{i} = a \left(\frac{1}{1-r}\right)$$

where $a \in \mathbb{R}$ and $r \in (0,1)$. In other words, this infinite sum is less than the constant: $a\left(\frac{1}{1-r}\right)$.

(a) Show that the sequence (y_n) is a Cauchy sequence.

(b) Since (y_n) is a Cauchy sequence, we see that (y_n) is a convergent sequence, or in other words there is a limit point y such that $\lim_{n\to\infty}y_n=y$. Prove that y is a fixed point of f.