\qquad

Instructions: Some questions on this test may be a bit difficult. Relax, and answer all 5 questions to the best of your ability (check every page to make sure you have answered everything). Note that partial solutions will receive partial credit, so putting something for a question will be better than leaving that question blank.

1. (10 points) Let $U=x^{\alpha} y^{\beta}$ where $(x, y) \in \mathbb{R}_{+}^{2}, \alpha+\beta=1$, and $\alpha, \beta>0 .{ }^{1}$
(a) Is U homogeneous? If so, of what degree?

$$
\begin{aligned}
U(t x, t y) & =(t x)^{\alpha}(t y)^{\beta} \\
& =t^{\alpha} t^{\beta} x^{\alpha} y^{\beta} \\
& =t^{\alpha+\beta} x^{\alpha} y^{\beta} \\
& =t x^{\alpha} y^{\beta} \\
& =t U(x, y)
\end{aligned}
$$

So U is homogeneous of degree 1 .
(b) Show that U is concave.

$$
\begin{aligned}
D U & =\left[\begin{array}{ll}
\alpha x^{\alpha-1} y^{\beta} & \beta x^{\alpha} y^{\beta-1}
\end{array}\right] \\
D^{2} U & =\left[\begin{array}{cc}
\alpha(\alpha-1) x^{\alpha-2} y^{\beta} & \alpha \beta x^{\alpha-1} y^{\beta-1} \\
\alpha \beta x^{\alpha-1} y^{\beta-1} & \beta(\beta-1) x^{\alpha} y^{\beta-2}
\end{array}\right]
\end{aligned}
$$

Notice that the first order leading principal minor is ≥ 0 since:

$$
\alpha(\alpha-1) x^{\alpha-2} y^{\beta} \geq 0
$$

So we need to look at all of the principal minors.
$\frac{\text { First Order Principal Minors: }}{\alpha(\alpha-1) x^{\alpha-2} y^{\beta} \leq 0}$

$$
\overline{\alpha(\alpha-1) x^{\alpha-2} y^{\beta} \leq 0} \quad \beta(\beta-1) x^{\alpha} y^{\beta-2} \leq 0
$$

Second Order Principal Minor:
$\left\lvert\, \begin{aligned} & D^{2} U\end{aligned}=\alpha(\alpha-1) \beta(\beta-1) x^{2 \alpha-2} y^{2 \beta-2}-\alpha^{2} \beta^{2} x^{2 \alpha-2} y^{2 \beta-2}\right.$
$\left|D^{2} U\right|=\alpha \beta(1-\alpha-\beta) x^{2 \alpha-2} y^{2 \beta-2}=0 \quad$ since $\alpha+\beta=1$.
$D^{2} U$ is negative semidefinite. Thus U is concave.

[^0]2. (5 points) Express the following sets using set-builder notation $\{f(x) \in \mathbb{Z}: p(x)\}$, where $f(x)$ is a function of x, and $p(x)$ is a statement or condition of x.
(a) $\{2,4,6,8, \ldots\}$
$$
\{2 n \in \mathbb{Z}: n>0\}
$$
(b) $\{-27,-8,-1,0\}$
$$
\left\{n^{3} \in \mathbb{Z}:-3 \leq n \leq 0\right\}
$$
3. (5 points) Consider the metric space: $(\mathbb{R},|\cdot|)$.
(a) Show that the interval $(0,1)$ is open.

Notice that the complement of $(0,1): \overline{(0,1)}=(-\infty, 0] \cup[1, \infty) .(-\infty, 0] \cup[1, \infty)$ is closed since it contains all of its limit points (since $(\mathbb{R},|\cdot|)$ is the metric space we are working in). Thus $(0,1)$ is open.

Alternative Solution: See assignment 3 solutions.
(b) Show that the set $\{1,2,3\}$ is closed.

Each point in the set $\{1,2,3\}$ is an isolated points. Notice that isolated points are not limit points, thus the set of limit points is: $\}=\emptyset$. Since $\emptyset \subseteq\{1,2,3\},\{1,2,3\}$ is closed.
4. (10 points) Prove the following:
(a) The intersection of two convex sets is convex.

Let A and B be two convex sets.
Now let $x, y \in A \cap B$.
Thus $x, y \in A$ and $x, y \in B$.
Since $x, y \in A$, it follows that $\lambda x+(1-\lambda) y \in A$ for $\lambda \in[0,1]$ as A is convex.
Since $x, y \in B$, it follows that $\lambda x+(1-\lambda) y \in B$ for $\lambda \in[0,1]$ as B is convex
Finally, $\lambda x+(1-\lambda) y \in A$ and $\lambda x+(1-\lambda) y \in B$ implies that $\lambda x+(1-\lambda) y \in A \cap B$.
Therefore $A \cap B$ is convex.
(b) The maximum of two convex functions is convex. In other words, if the functions f_{1} and f_{2} are convex, then $\max \left\{f_{1}, f_{2}\right\}$ is convex.

This question will not be graded.
Let f_{1} and f_{2} be convex functions and let $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$. Thus:

$$
\begin{equation*}
f_{i}(\alpha x+(1-\alpha) y) \leq \alpha f_{i}(x)+(1-\alpha) f_{i} \tag{1}
\end{equation*}
$$

for any $\alpha \in[0,1]$ and any $x, y \in \operatorname{Dom}\left(f_{i}\right)$ where $i \in\{1,2\}$
Taking the max of both sides of (1), we get the following:

$$
\begin{aligned}
\max _{i}\left\{f_{i}(\alpha x+(1-\alpha) y)\right\} & \leq \max _{i}\left\{\alpha f_{i}(x)+(1-\alpha) f_{i}(y)\right\} \\
\Rightarrow \max _{i}\left\{f_{i}(\alpha x+(1-\alpha) y)\right\} & \leq \max _{i}\left\{\alpha f_{i}(x)\right\}+\max _{i}\left\{(1-\alpha) f_{i}(y)\right\} \\
\Rightarrow \max _{i}\left\{f_{i}(\alpha x+(1-\alpha) y)\right\} & \leq \alpha \max _{i}\left\{f_{i}(x)\right\}+(1-\alpha) \max _{i}\left\{f_{i}(y)\right\} \\
\Rightarrow f(\alpha x+(1-\alpha) y) & \leq \alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Therefore, f is convex.

Alternative Solution: Notice that we could use the theorem that says that the epigraph of a function is a convex set iff the function is convex. When we take the maximum of two functions, we are taking an intersection of the two epigraphs (of f_{1} and f_{2}) to form the epigraph of the newly created function $\left(\max \left\{f_{1}, f_{2}\right\}\right)$. Since the two functions, f_{1} and f_{2}, are convex, their epigraphs are convex. The intersection of the epigraphs of f_{1} and f_{2} is convex (as shown in 4a). This intersection is the epigraph of $\max \left\{f_{1}, f_{2}\right\}$. Thus the function defined by $\max \left\{f_{1}, f_{2}\right\}$ is convex.
5. (10 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function on \mathbb{R}. Now assume that there is a $\lambda \in(0,1)$ such that:

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq \lambda\left|x-x^{\prime}\right|
$$

for all $x, x^{\prime} \in \mathbb{R}$
Suppose we start with $y_{1} \in \mathbb{R}$ and construct a sequence $\left(y_{n}\right)$ by a applying the function f at each index to the previous element of the sequence. Thus our sequence would look like the following:

$$
\begin{aligned}
\left(y_{n}\right) & =\left(y_{1}, y_{2}, \quad y_{3}, \quad y_{4}, \quad \ldots\right) \\
& =\left(y_{1}, f\left(y_{1}\right), f\left(f\left(y_{1}\right)\right), f\left(f\left(f\left(y_{1}\right)\right)\right), \ldots\right)
\end{aligned}
$$

Or in other words, $y_{n+1}=f\left(y_{n}\right)$.
You may find the following property of infinite series useful:

$$
\sum_{i=1}^{\infty} a r^{i}=a \sum_{i=1}^{\infty} r^{i}=a\left(\frac{1}{1-r}\right)
$$

where $a \in \mathbb{R}$ and $r \in(0,1)$. In other words, this infinite sum is less than the constant: $a\left(\frac{1}{1-r}\right)$.
(a) Show that the sequence $\left(y_{n}\right)$ is a Cauchy sequence.

Notice that you are acutally proving the contraction mapping theorem in $(\mathbb{R},|\cdot|)$, yay!
We need to show that for $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that for $m, n \geq N$, it follows that

$$
\left|y_{m}-y_{n}\right|<\varepsilon
$$

Assume without loss of generality that $n>m$ where $m, n \in \mathbb{N}$:

$$
\begin{aligned}
\left|y_{m+1}-y_{m+2}\right| & =\left|f\left(y_{m}\right)-f\left(y_{m+1}\right)\right| \\
& \leq \lambda\left|y_{m}-y_{m+1}\right|
\end{aligned}
$$

where $\lambda \in(0,1)$ Therefore:

$$
\begin{aligned}
\left|y_{m+1}-y_{m+2}\right| & \leq \lambda\left|y_{m}-y_{m+1}\right| \\
& \leq \lambda^{2}\left|y_{m-1}-y_{m}\right| \\
& \leq \lambda^{3}\left|y_{m-2}-y_{m-1}\right| \\
& \vdots \\
& \leq \lambda^{m}\left|y_{1}-y_{2}\right|
\end{aligned}
$$

Thus $\left|y_{m+1}-y_{m+2}\right| \leq \lambda^{m}\left|y_{1}-y_{2}\right|$
Therefore:

$$
\begin{aligned}
\left|y_{m}-y_{n}\right| & \leq\left|y_{m}-y_{m+1}+y_{m+1}-y_{m+2}+y_{m+2}-\ldots+y_{n-1}-y_{n}\right| \\
& \leq\left|y_{m}-y_{m+1}\right|+\left|y_{m+1}-y_{m+2}\right|+\ldots+\left|y_{n-1}-y_{n}\right| \\
& \leq \lambda^{m-1}\left|y_{1}-y_{2}\right|+\lambda^{m}\left|y_{1}-y_{2}\right|+\ldots+\lambda^{n-2}\left|y_{1}-y_{2}\right| \\
& =\lambda^{m-1}\left(1+\lambda+\lambda^{2}+\ldots+\lambda^{n-m-1}\right)\left|y_{1}-y_{2}\right| \\
& <\lambda^{m-1}\left(\frac{1}{1-\lambda}\right)\left|y_{1}-y_{2}\right|
\end{aligned}
$$

Let $\varepsilon>0$ and choose $N \in \mathbb{N}$ such that:

$$
\lambda^{N-1}<\frac{\varepsilon(1-\lambda)}{\left|y_{1}-y_{2}\right|}
$$

Then for $n>m \geq N$, we see that:

$$
\left|y_{1}-y_{2}\right|<\varepsilon
$$

Thus $\left(y_{n}\right)$ is cauchy.
(b) Since $\left(y_{n}\right)$ is a Cauchy sequence, we see that $\left(y_{n}\right)$ is a convergent sequence, or in other words there is a limit point y such that $\lim _{n \rightarrow \infty} y_{n}=y$. Prove that y is a fixed point of f.

Notice that $\lim _{n \rightarrow \infty} y_{n}=y$ and also $\lim _{n \rightarrow \infty} y_{n+1}=y$.
Since $y_{n+1}=f\left(y_{n}\right)$, it follows that $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=y$.
Thus $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{n \rightarrow \infty} y_{n}=y$.
In other words, $f(y)=y$, so y is a fixed point.

[^0]: ${ }^{1}$ Recall that $\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0\right.$ and $\left.y \geq 0\right\}$

