
PhD Mathcamp Final Name:
Summer 2018
Time Limit: 120 Minutes

Instructions: Some questions on this test may be a bit difficult. Relax, and answer all 5 questions to
the best of your ability (check every page to make sure you have answered everything). Note that partial
solutions will receive partial credit, so putting something for a question will be better than leaving that
question blank.

1. (10 points) Let U = xαyβ where (x, y) ∈ R2
+, α+ β = 1, and α, β > 0.1

(a) Is U homogeneous? If so, of what degree?

U(tx, ty) = (tx)α(ty)β

= tαtβxαyβ

= tα+βxαyβ

= txαyβ

= tU(x, y)

So U is homogeneous of degree 1.

(b) Show that U is concave.

DU =
[
αxα−1yβ βxαyβ−1

]
D2U =

[
α(α− 1)xα−2yβ αβxα−1yβ−1

αβxα−1yβ−1 β(β − 1)xαyβ−2

]
Notice that the first order leading principal minor is ≥ 0 since:

α(α− 1)xα−2yβ ≥ 0

So we need to look at all of the principal minors.

First Order Principal Minors:

α(α− 1)xα−2yβ ≤ 0 β(β − 1)xαyβ−2 ≤ 0

Second Order Principal Minor:∣∣D2U
∣∣ = α(α− 1)β(β − 1)x2α−2y2β−2 − α2β2x2α−2y2β−2∣∣D2U
∣∣ = αβ(1− α− β)x2α−2y2β−2 = 0 since α+ β = 1.

D2U is negative semidefinite. Thus U is concave.

1Recall that R2
+ = {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0}
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2. (5 points) Express the following sets using set-builder notation {f(x) ∈ Z : p(x)}, where f(x) is
a function of x, and p(x) is a statement or condition of x.

(a) {2,4,6,8,...}

{2n ∈ Z : n > 0}

(b) {-27,-8,-1,0}

{n3 ∈ Z : −3 ≤ n ≤ 0}

3. (5 points) Consider the metric space: (R, |·|).

(a) Show that the interval (0, 1) is open.

Notice that the complement of (0, 1): (0, 1) = (−∞, 0] ∪ [1,∞). (−∞, 0] ∪ [1,∞) is closed
since it contains all of its limit points (since (R, |·|) is the metric space we are working in).
Thus (0, 1) is open.

Alternative Solution: See assignment 3 solutions.

(b) Show that the set {1, 2, 3} is closed.

Each point in the set {1, 2, 3} is an isolated points. Notice that isolated points are not limit
points, thus the set of limit points is: {} = ∅. Since ∅ ⊆ {1, 2, 3}, {1, 2, 3} is closed.
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4. (10 points) Prove the following:

(a) The intersection of two convex sets is convex.

Let A and B be two convex sets.
Now let x, y ∈ A ∩B.
Thus x, y ∈ A and x, y ∈ B.
Since x, y ∈ A, it follows that λx+ (1− λ)y ∈ A for λ ∈ [0, 1] as A is convex.
Since x, y ∈ B, it follows that λx+ (1− λ)y ∈ B for λ ∈ [0, 1] as B is convex
Finally, λx+ (1− λ)y ∈ A and λx+ (1− λ)y ∈ B implies that λx+ (1− λ)y ∈ A ∩B.
Therefore A ∩B is convex.
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(b) The maximum of two convex functions is convex. In other words, if the functions f1 and f2
are convex, then max{f1, f2} is convex.

This question will not be graded.

Let f1 and f2 be convex functions and let f(x) = max{f1(x), f2(x)}. Thus:

fi(αx+ (1− α)y) ≤ αfi(x) + (1− α)fi (1)

for any α ∈ [0, 1] and any x, y ∈ Dom(fi) where i ∈ {1, 2}
Taking the max of both sides of (1), we get the following:

max
i
{fi(αx+ (1− α)y)} ≤ max

i
{αfi(x) + (1− α)fi(y)}

⇒ max
i
{fi(αx+ (1− α)y)} ≤ max

i
{αfi(x)}+ max

i
{(1− α)fi(y)}

⇒ max
i
{fi(αx+ (1− α)y)} ≤ αmax

i
{fi(x)}+ (1− α) max

i
{fi(y)}

⇒ f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

Therefore, f is convex.

Alternative Solution: Notice that we could use the theorem that says that the epigraph of
a function is a convex set iff the function is convex. When we take the maximum of two
functions, we are taking an intersection of the two epigraphs (of f1 and f2) to form the
epigraph of the newly created function (max{f1, f2}). Since the two functions, f1 and f2, are
convex, their epigraphs are convex. The intersection of the epigraphs of f1 and f2 is convex
(as shown in 4a). This intersection is the epigraph of max{f1, f2}. Thus the function defined
by max{f1, f2} is convex.
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5. (10 points) Let f : R→ R be a continuous function on R. Now assume that there is a λ ∈ (0, 1)
such that:

|f(x)− f(x′)|≤ λ|x− x′|

for all x, x′ ∈ R
Suppose we start with y1 ∈ R and construct a sequence (yn) by a applying the function f at each
index to the previous element of the sequence. Thus our sequence would look like the following:

(yn) = (y1, y2, y3, y4, ...)

= (y1, f(y1), f(f(y1)), f(f(f(y1))), ...)

Or in other words, yn+1 = f(yn).
You may find the following property of infinite series useful:

∞∑
i=1

ari = a

∞∑
i=1

ri = a

(
1

1− r

)

where a ∈ R and r ∈ (0, 1). In other words, this infinite sum is less than the constant: a
(

1
1−r

)
.

(a) Show that the sequence (yn) is a Cauchy sequence.

Notice that you are acutally proving the contraction mapping theorem in (R, |·|), yay!
We need to show that for ε > 0, there exists an N ∈ N such that for m,n ≥ N , it follows that

|ym − yn| < ε

Assume without loss of generality that n > m where m,n ∈ N:

|ym+1 − ym+2| = |f(ym)− f(ym+1)|
≤ λ |ym − ym+1|

where λ ∈ (0, 1) Therefore:

|ym+1 − ym+2| ≤ λ |ym − ym+1|
≤ λ2 |ym−1 − ym|
≤ λ3 |ym−2 − ym−1|
...

≤ λm |y1 − y2|

Thus |ym+1 − ym+2| ≤ λm |y1 − y2|
Therefore:

|ym − yn| ≤ |ym − ym+1 + ym+1 − ym+2 + ym+2 − ...+ yn−1 − yn|
≤ |ym − ym+1|+ |ym+1 − ym+2|+ ...+ |yn−1 − yn|
≤ λm−1 |y1 − y2|+ λm |y1 − y2|+ . . .+ λn−2 |y1 − y2|
= λm−1(1 + λ+ λ2 + . . .+ λn−m−1) |y1 − y2|

< λm−1
(

1

1− λ

)
|y1 − y2|

Let ε > 0 and choose N ∈ N such that:

λN−1 <
ε(1− λ)

|y1 − y2|

Then for n > m ≥ N , we see that:

|y1 − y2| < ε

Thus (yn) is cauchy.
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(b) Since (yn) is a Cauchy sequence, we see that (yn) is a convergent sequence, or in other words
there is a limit point y such that limn→∞ yn = y. Prove that y is a fixed point of f .

Notice that limn→∞ yn = y and also limn→∞ yn+1 = y.
Since yn+1 = f(yn), it follows that limn→∞ f(yn) = y.
Thus limn→∞ f(yn) = limn→∞ yn = y.
In other words, f(y) = y, so y is a fixed point.


